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Abstract

The Bloch equation containing a Zeeman modulation field is solved analytically by treating the Zeeman modulation frequency

as a perturbation. The absorption and dispersion signals at both 0� and 90� modulation phase are obtained. The solutions are

valid to first order in the modulation frequency, but are otherwise valid for any value of modulation amplitude or microwave

amplitude. A first order treatment of modulation frequency is shown to be a valid approximation over a wide range of typical

experimental EPR conditions. The solutions derived from the Bloch equation suggest that the effect of over-modulation on first

and second harmonic EPR spectra can be formulated as a mathematical filter that smoothes and broadens the under-modulated

signal. The only adjustable filter parameter is a width that is equivalent to the applied peak-to-peak modulation amplitude. The

true spin–spin and spin–lattice relaxation rates are completely determined from the under-modulated spectrum. The filters derived

from the analytic solutions of the Bloch equation in the linear limit of modulation frequency are tested against numerical solu-

tions of the Bloch equation that are valid for any modulation frequency to show their applicability. The filters are further tested

using experimental EPR spectra. Experimental under-modulated spectra are mathematically filtered and compared with the

experimental over-modulated spectra. The application of modulation filters to STEPR spectra is explored and limitations are

discussed.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Zeeman field modulation originally arose in continu-

ous wave electron paramagnetic resonance (CW EPR)

as a method of signal detection. When the amplitude

of the Zeeman field is modulated by a small fraction
of the total field at kHz frequencies the microwave res-

onance signal can be detected with a lock-in detector

that is frequency selective for the modulation frequency.

Modulation amplitudes that are of the same magnitude

as, or are larger than, the resonance line width of the

EPR signal will distort the shape of the detected signal.

On the other hand, larger modulation amplitudes pro-

duce stronger signals at the front end of the lock-in de-
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tector, and therefore lead to better signal to noise. In

biological studies, where spin concentrations are gener-

ally low, moderate signal distortion due to over-modula-

tion is often tolerated. When the modulation frequency

is competitive with the timescale of the spin–lattice re-

laxation rate, the modulating field acts as a driving field
for evolution of spin magnetization producing a passage

effect. Under this special circumstance, the effect of

modulation cannot be considered simply as a distortion

of the EPR line shape, and the modulation frequency

will affect the line shape even under lowest modulation

amplitude conditions. Modulation can therefore be used

to study the spin–lattice relaxation rate indirectly when

the timescales are similar. Saturation transfer EPR
(STEPR) was developed, in part, to make systematic

use of modulation in this manner. For example, the

rotational diffusion rates of spin-labeled proteins and
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DNA have been studied by STEPR by tracking features

in the EPR spectrum that are sensitive to motion-in-

duced changes in the spin–lattice relaxation rate. As in

the standard applications of modulation, the modula-

tion amplitude is increased to obtain better signal to

noise in the STEPR spectrum.
There are other EPR techniques that make use of,

or are influenced by, timescale overlap of the funda-

mental relaxation processes with the time variation of

the Zeeman field. For example, if the Zeeman field

sweep rate is competitive with the relaxation rates,

then ‘‘passage’’ effects are observed [1]. Another exam-

ple is provided by magic angle spinning, where me-

chanical modulation of the sample position effectively
changes the external Zeeman field orientation on a

timescale competitive with spin–lattice relaxation [2].

The present paper is limited to a discussion of passage

effects generated by Zeeman field modulation. STEPR

is used to demonstrate the importance of modulation

frequency.

Typical CW EPR spectrometers use a lock-in detec-

tor to select the signal at the modulation frequency,
but are often also equipped to detect the response at

twice the modulation frequency to produce a second

harmonic EPR spectrum. Lock-in detectors are also

phase sensitive. The component of the first or second

harmonic signal that is 90� out of phase with respect

to the driving modulation field (the quadrature signal)

can be detected. In both experimental and theoretical

studies the second harmonic quadrature absorption
EPR spectrum was found empirically to have the great-

est sensitivity to changes in the spin–lattice relaxation

rate under STEPR conditions, and so is the principle

spectrum recorded in STEPR. The first harmonic quad-

rature dispersion EPR spectrum exhibits similar sensi-

tivity [3].

Early STEPR theory recognized that quadrature

spectra are related to the derivatives of in-phase spectra
under low modulation amplitude and low modulation

frequency conditions [4]. The computational cost of in-

cluding a full treatment of modulation amplitude has

meant that STEPR simulations that include a complete

description of the magnetic tensors and molecular mo-

tion have been restricted, for the most part, to the low

modulation amplitude limit [3,5]. The equation of mo-

tion for magnetization is formulated as a stochastic
Liouville equation in STEPR theory [3,6,7]. The sto-

chastic Liouville formulation allows for the effect of

molecular motion to be properly incorporated into

the equation of motion. Simplifying the way in which

molecular motion is treated in the equation of motion

has reduced the computational cost of solving the equa-

tion of motion, and has allowed for the inclusion of

modulation. One method of simplification is to restrict
STEPR theory to uniaxial motion [8]. Another ap-

proach is to restrict simulation to the regime of isotro-
pic motional narrowing of resonance lines, where the

simple Bloch equation suffices. The modulating field

can be easily included in the Bloch equation as a driv-

ing field, and quadrature spectra can be simulated [9].

Singel and co-workers found that numerically simulat-

ed quadrature spectra could be fit as a linear superpo-
sition from a basis set of in-phase signals and

derivatives of in-phase signals, but provided no funda-

mental explanation for this observation. This decompo-

sition of the quadrature signals appeared to hold over a

wide range of modulation amplitudes and microwave

powers [10]. The best-fit coefficients to the basis set of

in-phase signals varied systematically with microwave

power.
We have solved the Bloch equation with modulation

by treating the modulation frequency as a perturba-

tion. The small modulation frequency limit considered

here is complementary to the large modulation fre-

quency limit investigated by Kalin et al. [11]. We have

obtained analytic expressions for all signals at all har-

monics of modulation (absorption, dispersion, in-

phase, and quadrature). The solutions are only valid
up to first order in modulation frequency, but are valid

for arbitrary microwave powers and modulation ampli-

tudes. These solutions show exactly how the quadra-

ture signals are composed of linear combinations of

in-phase signals. The solutions also make clear what

‘‘distortion’’ due to modulation means. We find that

the in-phase signals (in the linear limit of modulation

frequency) can be formulated as a mathematical filter
(convolution) acting on the un-modulated spectrum.

When the filter function acts on the un-modulated

spectrum it replaces each field point in the spectrum

with a weighted average over all points in the spectrum

that fall within a window the size of the peak-to-peak

modulation amplitude. Furthermore, we have devel-

oped a second class of mathematical filters that act

on the under-modulated signal (the signal in the limit
of small modulation amplitude) to produce a signal

at arbitrary modulation amplitude. The filters from

this second class apply to quadrature spectra, as well.

In particular, a filter exists that acts on a first harmon-

ic under-modulated quadrature spectrum and produces

the over-modulated second harmonic quadrature spec-

trum. The filters do not connect in-phase and quadra-

ture signals, however. All of the filters are limited by
the assumption that the modulation frequency is only

included to linear order.

Our solutions to the Bloch equation provide signifi-

cant insight into the relationship of the second harmon-

ic spectrum to the corresponding first harmonic

spectrum. The decomposition of the quadrature com-

ponents is of particular interest for STEPR. The Bloch

equation solutions are derived in the linear modulation
frequency limit, which precludes significant competition

of modulation frequency and spin–lattice relaxation.
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However, the solutions in the low frequency regime

provide a standard of what to expect from ‘‘normal’’

modulation effects, and therefore help make clear what

a true STEPR effect is. Our results will help to tune

STEPR conditions to maximize the non-trivial features

in the STEPR spectrum. In a qualitative sense, the de-
composition of the quadrature components into in-

phase signals holds approximately in STEPR and is re-

sponsible for much of the complex structure of quadra-

ture components observed in STEPR. Part of the

observed sensitivity of the STEPR spectrum to micro-

wave power and rotational diffusion time is because

of an approximate mixing of in-phase components of

the type found under normal modulation conditions.
The approximate mixing coefficients are affected by

both microwave power and rotational diffusion time

in STEPR. This emphasizes the need for careful inter-

pretation of the quadrature signals in STEPR. In a

quantitative sense, the filters we have developed pro-

vide a tool to test whether the STEPR spectrum is ac-

tually sensitive to the interplay of modulation

frequency and spin–lattice relaxation rate. For exam-
ple, if a filter applied to the experimental first harmonic

quadrature spectrum exactly reproduces the experimen-

tal second harmonic quadrature spectrum, then there is

no unique information present in the supposedly more

sensitive STEPR spectrum.

The filters we develop are tested by comparison with

numerical solutions of the Bloch equation to demon-

strate their validity in the linear modulation frequency
regime. The concern in generalizing the filters to

STEPR arises from the effect of molecular dynamics

on the basic structure of the equations governing the

magnetization. The technique of saturation transfer

EPR relies heavily on non-trivial competition of the ef-

fect on electron resonance of the modulating field and

local magnetic fields generated by molecular motion.

Experimental STEPR spectra are shown to illustrate
empirically the physical regime where the filter tech-

niques fail.

The filter formulation of modulation is connected

with a pre-existing approach to modulation. Hyde et

al. [12] developed the technique of pseudo-modulation,

which accounts for modulation heuristically. We derive

the pseudo-modulation equation from first principles,

thus providing a solid foundation for this technique.
The filter form of modulation follows naturally from

the pseudo-modulation equations and their generaliza-

tion to quadrature signals.

Section 2 reviews pseudo-modulation and derives the

filter form of modulation. Section 3 summarizes the ab-

sorption, dispersion, and quadrature solutions to the

Bloch equations in the linear limit of modulation fre-

quency. Section 4 tests the validity of the quadrature so-
lutions of the Bloch equation from Section 3 by

comparison with numerical solutions of the Bloch equa-
tion that are valid for any value of modulation frequency.

Section 5 shows the application of the filters to experimen-

tal EPR and STEPR spectra.
2. Pseudo-modulation and the filter form of modulation

The technique of pseudo-modulation was proposed

by Hyde et al. primarily for resolution enhancement

of spectra acquired with low modulation frequency

and amplitude [12,13]. Typically, the first harmonic

absorption spectrum is obtained experimentally. By

application of the equation of pseudo-modulation

higher harmonics of modulation are generated, and
at the same time, the noise of the original spectrum

is filtered. The higher harmonics behave like deriva-

tives of the zeroth harmonic signal. As derivatives,

the higher harmonics have greater sensitivity to subtle

line shape changes. The equation of pseudo-modula-

tion is obtained by postulating that the magnetiza-

tion adiabatically follows the modulation field. This

postulate is justified below based upon the Bloch
equation when the magnetization is expanded to first

order in the modulation frequency (see Section 3 and

Appendix).

The standard field configuration in an EPR experi-

ment consists of a large static field H0 along ẑ and a con-

tinuous wave RF field polarized along x̂. The absorption
signal is the ŷ component of magnetization in the rotat-

ing frame of the RF field, ~MyðDÞ. Here D = x�jcej ÆH0 is
the field-frequency difference, where ce is the gyromag-

netic ratio of the electron.

If a modulating field HmðtÞ ¼ cehm
2

� cos 2p
Tm

� t
� �

� ẑ is

added to static Zeeman field, the adiabatic response of

the magnetization is

~My D� chm
2

� cos 2p
Tm

� t
� �� �

:

The nth harmonic response at a given multiple of the

frequency of modulation is obtained by the Fourier

integral:

AnðDÞ ¼
Z Tm

0

~My D� chm
2

� cos 2p
Tm

� t
� �� �

� cos 2p � n
Tm

� t
� �

� dt
Tm=2

; ð1Þ

where Tm is the modulation period and xm = 2p/Tm is
the modulation frequency. Expression (1) is equivalent

to the prediction of pseudo-modulation. The adiabatic

assumption is used in pseudo-modulation as follows.

The absorption signal AðDÞ ¼ ~MyðDÞ is written in terms

of its Fourier transform representation [14].

AðDÞ ¼ 1

2p

Z 1
F ðT Þ � e�i�D�T dT ; ð2Þ
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where

F ðT Þ ¼
Z 1

�1
~MyðDÞ � ei�D�T dD: ð3Þ

To arrive at the harmonics of the modulated absorption
signal the substitution D fi D�chm/2 Æcos(xm Æ t) is made

in (2) representing adiabatic response of the magnetiza-

tion to the modulating field. The exponential in the Fou-

rier transform exp{i Æchm/2 Æcos(xm Æ t) ÆT} is expanded

in Bessel functions to give [15]

AmodðDÞ ¼
1

2p

X1
n¼�1

ðiÞn

�
Z 1

�1
F ðT Þ � Jn

chm
2

� T
� �

e�i�D�T dT
� �

ei�n�xm�t:

The nth harmonic of xm is the Fourier coefficient in the

sum and is therefore

AnðDÞ ¼
1

2dn;0p
� ðiÞn

Z 1

�1
F ðT ÞJn

chm
2

� T
� �

e�i�D�T dT : ð4Þ

Eq. (4) is the equation of pseudo-modulation.

The pseudo-modulation technique of Hyde et al. con-

sists of two processes that act on the absorption signal

A(D): (1) the signal is Fourier transformed (2) the FT

is back-transformed by the pseudo-modulation Eq. (4).

Analytic expressions for an over-modulated Lorentizian

line shape are derivable from (4) by using the Fourier

transform of a Lorentizian line shape [16]. Eq. (4) has
been modified to include Gaussian broadening of the

un-modulated Lorentizian, and has been evaluated both

numerically and by Taylor expansion of the Bessel

function in the integrand [17]. More generally, if the

absorption spectrum without modulation is simulated

numerically, the higher harmonics may be generated

by the pseudo-modulation technique. While Hyde

et al. [12] discuss the specialized application of double
modulation with dual modulating fields, the most com-

mon signal in EPR spectroscopy is the first harmonic

absorption signal acquired with only one modulating

field. The input to the pseudo-modulation technique

for a single modulation field is the un-modulated signal.

To apply the pseudo-modulation equation to an experi-

mental first harmonic signal, the signal must be acquired

with low modulation amplitude so that it approximates
the derivative of the un-modulated absorption. The ex-

perimental first harmonic signal is then integrated to

give the input to pseudo-modulation. This adds yet an-

other numerical integration to the pseudo-modulation

process, which now totals three numerical integrations

of the original spectrum to produce the output

spectrum.

To remedy this situation we recast the Eq. (4) in
terms of a filter function, which acts directly on the de-

rivative spectrum. When (3) is substituted into (4) the

Fourier transforms of the J0, J1, and J2 Bessel functions

[18] can be used to re-write Eq. (4) for the special cases

of n = 0, 1, and 2 as:
A0ðDÞ ¼
1

2 � p �
Z 1

�1

A D� chm
2

u
� �

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p du;

A1ðDÞ ¼
�1

p
�
Z 1

�1

A D� chm
2

u
� �

� uffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p du;

A2ðDÞ ¼
1

p

Z 1

�1

A D� chm
2

u
� �

� 1� 2u2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p du:

ð5Þ

The finite range in the integrals of (5) occurs because

the Fourier transform of the Bessel functions with in-
teger index are band limited. If the change of vari-

ables u = cos(xm Æ t) is made in (5) the connection

with (1) is revealed. Eqs. (5) are just the 1, cos(xm Æ t),
and cos(2xm Æ t) transforms of A D� chm

2
cosðxm � tÞ

� 	
,

respectively. We emphasize the pseudo-modulation

formulation because it is Eq. (4) that arises directly

from the Bloch equation when solving for the in-phase

and quadrature components to linear order in the
modulation frequency (see Section 3 and Appendix).

Eqs. (5) still suffer the defect that they require the ab-

sorption signal without modulation, A(D), to generate

a modulated spectrum. It is desirable to have the filter

expressed in terms of the low modulation amplitude

first harmonic signal as an input because this is exper-

imentally common. Also, the filters in (5) have a sharp

dependence at the ‘‘turning’’ points of the modulation,
because of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
in the denominator. Both of these

undesirable features of (5) may be removed from the

first and second harmonic cases as follows.The expres-

sion (5) for first harmonic is integrated by parts to

give:
A1ðDÞ ¼
chm
2p

Z 1

�1

o

oD
A D� chm

2
u

� �� �
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
du:

ð6Þ
In practice Eq. (6) is applied as:
A1ðDÞ¼
2

p �chm
�
Z chm=2

�chm=2

o

oD
AðD�uÞ

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
chm
2

� �2

�u2

s
du:

ð7Þ
The filter (7) acts upon the first harmonic absorption in

the low modulation limit (oA/oD). The filter process de-
pends only on hm; all other details of the line shape enter

through the input (oA/oD).
When the second harmonic expression from (5) is in-

tegrated by parts:

A2ðDÞ ¼
�1

2p
� chm

Z 1

�1

o

oD
A D� chm

2
u

� �� �
� u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
du: ð8Þ



R.D. Nielsen et al. / Journal of Magnetic Resonance 170 (2004) 345–371 349
Another integration by parts gives:

A2ðDÞ ¼
ch2m
12p

Z 1

�1

o2

oD2
A D� chm

2
u

� �� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p� �3
du:

ð9Þ
Consequently, the modulated second harmonic absorp-

tion signal is generated by a filter (9) acting upon the
low modulation limit of the second harmonic signal

(o2A/oD2). The expressions (6), (8), and (9) are all of di-

rect utility because they expresses the modulated spec-

trum in terms of the low modulation limit (derivative

spectrum). These filters will be demonstrated below by

their action on simulated and experimental spectra.

Fig. 1 summarizes the action of the filters.

The pseudo-modulation technique (and the novel var-
iant shown here) is an incomplete description of modula-

tion. First, only the absorption signal is treated; as yet, it is

unclear how to treat dispersion. Second, the adiabatic ap-

proximation means that the magnetization follows the

modulating field instantaneously, as if it were a static ad-

dition to the Zeeman field. This means that no phase-lag

between the magnetization response and the modulating

filed can develop. Therefore, pseudo-modulation cannot
predict the quadrature absorption or dispersion signals.

Both of these issues are addressed and solved when Eq.

(4) is derived from first principles below from the Bloch

equation in the low modulation frequency limit. It will

be demonstrated that the filters in Fig. 1 can be general-

ized not only to the in-phase dispersion signal, but they

can be extended all quadrature signals, as well.
3. Absorption and dispersion signals, in-phase and quad-

rature, from the Bloch equation

The details of the derivation of the in-phase and

quadrature signals from the Bloch equation are given

in the Appendix. All of the results derived in the Appen-

dix are obtained by a formal Taylor expansion of the
magnetization in the modulation frequency variable.

Only terms up to linear order in the modulation

frequency are retained. Section 4 provides examples that

illustrate when the linear expansion becomes invalid

(see the discussion of Figs. 11 and 12). We summarize
Fig. 1. Relation of the first and second harmonic absorption signals to

derivative spectra through the action of filters f11 from the Eq. (6), f12
from the Eq. (8), and f22 from the Eq. (9). The filter variable is denoted

by u, and is applied as described in the text.
the expressions for in-phase and quadrature signals

from the Appendix here. We then connect the resulting

expressions with the pseudo-modulation Eq. (4).The

in-phase absorption and dispersion are given by:

AnðDÞ ¼ ch1 �M0 � ðiÞn
R2

R0
2

Z 1

0

e�R0
2
�T Jn

chm
2

� T
� �

�
cosðD � T Þ
i � sinðD � T Þ

� �n even

n odd

dT ð10Þ

and

DnðDÞ ¼ ch1 �M0 � ðiÞn
Z 1

0

e�R0
2
�T Jn

chm
2

� T
� �

�
sinðD � T Þ

�i � cosðD � T Þ

� �n even

n odd

dT ; ð11Þ

where h1 is the amplitude of the RF field. M0 is the equi-

librium induced magnetization in the absence of the RF

field, and R0
2 ¼ R2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðch1Þ2

R1�R2

q
. The connection of (10)

and (11) with pseudo-modulation is discussed below.

The absorption and dispersion quadrature signals

(denoted with a prime) are given in terms of the in-phase

signals by:

A0
nðDÞ ¼ �n �xm

2
� 1þKð Þ

2
� o

oD
DnðDÞ �

1�Kð Þ
2R2

�AnðDÞ
� �

ð12Þ
and

D0
nðDÞ ¼

n � xm

2
� 1þ Kð Þ

2
� R0

2

R2

� �2
o

oD
AnðDÞ

 ! 

� 1� Kð Þ
2

� 1

R2

DnðDÞ þ
1

R2ð Þ2
Z D

�1
AnðDÞdD

 !!

ð13Þ

or

D0
nðDÞ¼

n �xm

2
� 1þKð Þ

2

R0
2

R2

� �2
o

oD
An Dð Þ

 ! 

� 1�Kð Þ
2

1

R2

DnðDÞ�
1

R2ð Þ2
� cehm
2 �n � Anþ1ðDÞ�An�1ðDÞð Þ

 !!
;

where xm is the modulation frequency and

K ¼ 1� ch1
R1

� �2
 !,

1þ R1

R2

� ch1
R1

� �2
 !

� 1� S0

1þ R1=R2ð Þ � S0

; S0 ¼
ch1
R1

� �2

:

The Bessel function in the integrand of Eq. (10) is ei-

ther even or odd depending upon whether the index n is

an even or odd integer. The latter fact allows the integra-

tion range in (10) to be re-written symmetrically from

�1 to 1. When Eq. (10) is re-written in the form of
Eq. (4) the value of F(T) can be identified as:
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F ðT Þ ¼ ch1 �M0 �
R2

R0
2

e�R0
2
�jT j;

the Fourier transform of a Lorentizian line shape [16].

Therefore, the solution of the Bloch equation under lin-

ear modulation frequency (10) is the prediction of the

pseudo-modulation Eq. (4), assuming the un-modulated

absorption line shape is a Lorentizian.

The integration range in the expression for the in-
phase dispersion signal (11) cannot be written symmetri-

cally because the parity of the Bessel function is opposite

that of the trigonometric function. It should also be not-

ed that the expression for the absorption signal (11) con-

tains a factor R2=R0
2, which is important for saturating

values of the microwave amplitude. An important simi-

larity that the dispersion formula shares with absorption

is that the effect of modulation can be expressed by the
same filter that was developed for absorption above (see

Fig. 1).

The quadrature signals (12) and (13) are composed

of the in-phase signals (10) and (11). That is, the

quadrature signals are composed of the in-phase sig-

nals regardless of the value of modulation amplitude.

The differentiation and integration operations that act

on the in-phase signals in (12) and (13) commute with
the operation of the filters (6), (8), and (9). The filters

(6), (8), and (9) are therefore applicable to the quad-

rature signals, as well. Eqs. (10) and (11) can be eval-

uated analytically using known expressions for the

integrals over Bessel functions, and are compared with

numerical solutions of the Bloch equation elsewhere

[16]. We focus here on Eqs. (12) and (13) by solving

the Bloch equation numerically for the in-phase and
quadrature signals. The numerically generated in-

phase signals are used to generate the quadrature sig-

nals according to (12) and (13), and the results are

compared with the numerically simulated quadrature

solutions.

There are two approaches to solving the Bloch equa-

tion that we indicate here. In both approaches the

magnetization is expressed as a Fourier series and the
Bloch equation is rewritten as an infinite set of coupled

simultaneous equations for the Fourier coefficients (see

Appendix). The solution of the Bloch equation

amounts to a diagonalization of an infinite matrix.

One method of solution is to truncate this infinite ma-

trix at the Nth harmonic followed by standard finite-

matrix diagonalization. We call this procedure direct

diagonalization. As shown in the Appendix, direct di-
agonalization can be carried out numerically, or ana-

lytically. The N fi 1 limit of the analytic expressions

gives Eqs. (10)–(13). An alternative approach is to for-

mulate the infinite set of equations as a matrix contin-

ued fraction, and to solve by convergents. This

method, developed elsewhere, is summarized in the Ap-

pendix [9].
4. Illustration of quadrature signal composition and the

action of modulation filters using numerical evaluation of

the Bloch equation

The previous sections established the connection of

the Bloch equation with pseudo-modulation and its gen-
eralization to dispersion and quadrature signals. We now

test the filters (6), (8), and (9) and quadrature composi-

tion Eqs. (12) and (13) through comparison with numer-

ical evaluation of the Bloch equation. The two methods

used to simulate the Bloch equation numerically are

the continued fraction convergent approach and direct

diagonalization. Numerical implementation of the con-

tinued fraction convergent approach is detailed in Rob-
inson et al [9]. The simulation routine used here was

written by Robinson et al., and includes the effect of

modulation frequency to all orders. Unless indicated

otherwise the convergents were truncated at the 10th har-

monic for simulations shown in this section. The direct

diagonalization approach is straightforward. The matrix

manipulation environment Matlab was used, and matrix

inverses were computed with the built-in inversion rou-
tines [19]. When direct diagonalization is referred to be-

low the numerical solution of (A.5) is meant. Eq. (A.5)

treats the modulation frequency as a first order perturba-

tion. The form of the matrix solution could easily be

modified to include higher order modulation frequency

effects. This is not done here because we wish to compare

with the analytic equations derived under the linear mod-

ulation frequency assumption with numerical direct di-
agonalization. We rely upon the numerical continued

fraction solution of Robinson et al. to provide accurate

line shapes with arbitrary modulation frequency.

4.1. Test of quadrature composition

The expressions for the quadrature signals (12) and

(13) are tested in Figs. 2–5. Quadrature signals are con-
structed as linear combinations of in-phase signals, and

are compared to the numerically generated quadrature

signals. The coefficients of the linear combination of

in-phase signals in the quadrature spectrum are gov-

erned by the degree of saturation according to the value

of the factor S0 = (ch1/R1)
2 (see Section 3). When S0 � 1,

the two in-phase signals that contribute to the total

quadrature signal are of comparable amplitude (see
(12), for example). The figures below all have parame-

ters such that S0 � 1, unless otherwise indicated.

Fig. 2 shows the first harmonic in-phase absorption

and dispersion signals (left panels, top and bottom)

and quadrature absorption and dispersion signals (right

panels, top and bottom). The modulation amplitude is

eight times the intrinsic line width. The modulation fre-

quency is 10kHz. The solid lines (in all panels) were sim-
ulated numerically using the direct diagonalization

method described above. The ‘‘dots’’ were simulated



Fig. 2. First harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). Relaxation rates are R2/c = 140mG, R1/c = 100mG, ch1 � R1,chm = 8 Æ R2, xm/2p = 10kHz. Solid thin lines (in all panels) are

generated numerically from the direct diagonalization method with N = 9 (see text). ‘‘Dots’’ are generated from the continued fraction method

N = 10 (see text). Dashed lines (right, top/bottom) are obtained from the in-phase absorption/dispersion signals (left, top/bottom) using Eqs. (12) and

(13).

Fig. 3. First harmonic quadrature absorption (left) and dispersion (right) calculated using Eqs. (12) and (13) from in-phase signals that were

generated numerically by direct diagonalization with N = 9 (see Fig. 2, right panels). The dark lines are the sum of the dashed lines. The text indicates

the source of each contribution (dashed lines) to (12) and (13). The signals displayed are scaled by the coefficients from (12) and (13).
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Fig. 4. Second harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). Relaxation rates are the same as in Fig. 2, ch1 � R1, chm = 8 Æ R2, xm/2p = 10kHz. Solid thin lines are generated numerically from

the direct diagonalization method with N = 9 (see text). ‘‘Dots’’ are generated from the continued fraction method N = 10 (see text). Dashed lines

(right, top/bottom) are obtained from the in-phase absorption/dispersion signals (left, top/bottom) using Eqs. (12) and (13).

Fig. 5. Second harmonic quadrature absorption (left) and dispersion (right) calculated using Eqs. (12) and (13) from in-phase signals that were

generated numerically by direct diagonalization with N = 9 (see Fig. 4, right panels). The dark lines are the sum of the dashed lines. The text indicates

the source of each contribution (dashed lines) to (12) and (13). The signals displayed are scaled by the coefficients from (12) and (13).
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numerically using the continued fraction approach. The

dashed lines in the right panels are a test of Eqs. (12) and

(13), and were constructed using only the in-phase sig-

nals in the left panels. The dashed lines in the right pan-

els are linear combinations of the direct diagonalization-

generated in-phase signals (shown in the left panels) us-
ing Eq. (12) in the case of absorption (top right) and us-

ing Eq. (13) in the case of dispersion (bottom right). The

quadrature signals generated by the continued fraction

method are also plotted (as dots) in the right panels,

but are obscured by overlap with the dashed lines.

Fig. 3 shows the decomposition of the quadrature sig-

nals (from Fig. 2) into their components (absorption left

and dispersion right) according to Eqs. (12) and (13).
Because numerical derivatives of in-phase signals were

necessary for Figs. 2 and 3, the signals were generated

with a resolution of 4096 points over ±5G to ensure ac-

curacy. There are ‘‘extra’’ features in the quadrature sig-

nals generated from direct diagonalization, as seen in

Fig. 2 (solid thin lines, right panels). These arise from fi-

nite truncation of the matrices. The truncation was at

the 9th harmonic in Figs. 2 and 3. If the matrices had
been truncated at higher harmonics these truncation er-

rors would have been diminished. The 9th harmonic was

deliberately chosen here so that the numerical result of

the direct diagonalization procedure could be distin-

guished visually from the other methods, and to illus-

trate the effect of finite truncation.

Figs. 4 and 5 are the second harmonic analogues of

Figs. 2 and 3. The numerically generated second har-
monic quadrature absorption (Fig. 4, top right) exhibits

the same type of deliberate truncation error as was ob-

served in the first harmonic (Fig. 2, top right). The quad-

rature signals generated by the continued fraction

method are plotted (as dots) in the right panels, but

are obscured by overlap with the dashed lines. Fig. 5,

shows the composition of the quadrature signals from

Fig. 4 using expressions (12) and (13) for the second har-
monic quadrature components.

4.2. Test of the filter formulation of modulation

Figs. 6–12 illustrate the action of the filters shown in

Fig. 1 on numerically generated solutions to the Bloch

equation that were obtained using the continued fraction

method. The filters generatemodulated line shapes by act-
ing on the low modulation amplitude limit of either the

first or second harmonic signals. Figs. 6 and 7 show the

low modulation amplitude limit of the first and second

harmonic in-phase and quadrature signals generated by

the continued fraction method with the same parameters

as used above inFigs. 2–5, except that themodulation am-

plitude is one-tenth the natural line width. As will be

shown below, the spectra in Figs. 6 and 7, when properly
filtered, will re-produce the over-modulated signals al-

ready given in Figs. 2–5.
Fig. 8 shows the application of the first harmonic fil-

ter (Eq. (6), f11 in Fig. 1) to each of the spectra in Fig. 6.

The modulation width used in the filter was chm = 8 Æ R2

so that the results could be directly compared with the

numerically generated spectra having the same parame-

ters as in Fig. 2. The dark lines are the simulations of the
Bloch equation from the continued fraction method, just

as in Fig. 2, but with greater resolution. The dashed lines

are the application of the filter (6) to the spectra in Fig. 6

with no adjustment except a slight offset along the field

axis for visualization. The filter (6) accurately reproduc-

es the modulated first harmonic spectra using only the

low modulation limit line shape as an input and no ad-

justable parameters. The second harmonic spectra in
Fig. 7 are similarly filtered to produce modulated spec-

tra using the filter (9) (f22 in Fig. 1). The action of filter

(9) is depicted in Fig. 9 (dark dashed lines), and is the

second harmonic analog of Fig. 8. The modulated sec-

ond harmonic signals are alternatively generated from

the low modulation limit of the first harmonic signals

according to the filter (8) (f12 in Fig. 1). The result of ap-

plying filter (8) to the spectra in Fig. 6 is also shown in
Fig. 9 (light dashed lines). Both sets of dashed lines are

shifted along the field axis for visualization.

Excellent agreement is demonstrated in Figs. 8 and

9 between numerical solutions to the Bloch equation

independently generated under high modulation

(chm = 8 Æ R2) and the result of applying filters (6), (8),

and (9) to low modulation spectra (chm = 0.1 Æ R2). The

theoretical justification for all of these results rests upon
a first order treatment of the modulation frequency xm,

as detailed in the Appendix.

To demonstrate the break down of Eqs. (6), (8), and

(9) and (10)–(13) away from the linear regime of modu-

lation frequency, xm was increased by an order of mag-

nitude from the value used in Figs. 2–9. As a first test,

Fig. 10 shows Fig. 2 reproduced with the new modula-

tion frequency xm/2p = 100kHz. The solid thick black
lines are the numerical solutions to the Bloch equation

using the continued fraction method, which properly in-

clude modulation to all orders. The thin solid lines are

numerical simulations using the direct diagonalization

method to first order in the modulation frequency (see

Eq. (A.5) in the Appendix). The thick dashed lines (right

panels) are Eqs. (12) and (13) applied to the in-phase

continued fraction simulations. The thin solid lines are
obscured in the right panels by overlap with the dashed

lines. The numeric continued fraction method, because

it is valid to all orders of modulation frequency, repre-

sents the correct line shape. The linearized approach

of direct diagonalization (left panels, thin lines Fig. 10,

Eq. (A.5)) resembles very closely the continued fraction

simulation for the in-phase components (left panels,

thick solid lines Fig. 10), but is slightly different at
the maxima. The quadrature components calculated by

the direct diagonalization show large deviations from



Fig. 6. First harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). Relaxation rates are the same as in Fig. 2, ch1 � R1, chm = 0.1 Æ R2, xm/2p = 10kHz. Spectra are generated from the continued

fraction method N = 10 and a resolution of 4096 points over ±5G (see text).

Fig. 7. Second harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). Relaxation rates are the same as in Fig. 2, ch1 � R1, chm = 0.1 Æ R2, xm/2p = 10kHz. Spectra are generated from the continued

fraction method N = 10 and a resolution of 4096 points over ±5G (see text).
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Fig. 8. First harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). Solid lines are generated from the continued fraction method for N = 10 (see text) with parameters identical to Fig. 2. Dashed

lines are the result of applying f11 (Eq. (7)) to each of the signals in Fig. 6. The modulation width in the filter was chm = 8 Æ R2. The dashed lines have

been translated slightly along the x-axis for visualization.

Fig. 9. Second harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). Solid lines are generated from the continued fraction method for N = 10 (see text) with parameters identical to Fig. 4. The dark

dashed lines are the result of applying f22 (Eq. (9)) to each of the signals in Fig. 7. The light dashed lines are the result of applying f12 (Eq. (8)) to each

of the signals in Fig. 6. The modulation width in the each filter was chm = 8 Æ R2. The dashed lines have been translated slightly along the x-axis for

visualization.
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Fig. 10. First harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). Relaxation rates are the same as in Fig. 2, ch1�R1, chm = 8 Æ R2, xm/2p = 100kHz. Solid thin lines are generated numerically from

the direct diagonalization method with N = 9 (see text), and are obscured in the right panels because of overlap with the dashed lines. Solid thick lines

are generated from the continued fraction method for N = 10 (see text). Dashed lines (right, top/bottom) are obtained from the in-phase absorption/

dispersion signals of the continued fraction method (left , top/bottom, thick lines) using equations (see text Eqs. (12) and (13)).

Fig. 11. First harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). Relaxation rates are the same as in Fig. 2, ch1 � R1, chm = 8 Æ R2, xm/2p = 100kHz. Solid lines are generated from the continued

fraction method for N = 10 and a resolution of 4096 points over ±5G (see text). Dashed lines are generated from the filter (6) applied to low

modulation amplitude spectra (chm = 0.1 Æ R2) that were simulated with the continued fraction algorithm at xm/2p = 100.
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Fig. 12. First harmonic in-phase and quadrature line shapes: in-phase absorption/dispersion (left, top/bottom), quadrature absorption/dispersion

(right, top/bottom). The parameters are identical to Fig. 11 except that ch1 � R1/10
2. Solid lines are generated from the continued fraction method for

N = 10 and a resolution of 4096 points over ±5G (see text). Dashed lines are generated from low modulation amplitude spectra (chm = 0.1 Æ R2 ) at

xm/2p = 100 and ch1 � R1/10
2 using the filter (7).

R.D. Nielsen et al. / Journal of Magnetic Resonance 170 (2004) 345–371 357
the continued fraction line shapes, however. The repre-

sentation of quadrature components as the superposi-

tion of in-phase signals (dashed lines) clearly breaks

down. In fact, the quadrature signal calculated from a

superposition of in-phase signals is in very good agree-
ment with the linearized direct diagonalization calcula-

tion (thin lines, right panel), as would be suspected

from the similarity of signals from the two simulation

methods used in the left panels of Fig. 10.

To test the effect of modulation frequency on the filter

method of Eq. (6), low modulation amplitude (chm =

0.1 Æ R2) spectrawere simulatedwithxm/2p = 100kHz us-

ing the continued fraction approach, in analogy to Fig. 6.
The result of filtering these signals with Eq. (6) is shown

in Fig. 11. The solid lines represent the same continued

fraction calculation as in Fig. 10. The dashed lines are

the filtered low modulation frequency signals using a

filter modulation width of chm = 8 Æ R2.

The filtered line shapes in Fig. 11 (dashed lines) retain

the appearance of the spectra calculated under low mod-

ulation frequency in Figs. 2 and 8, and the numerical sim-
ulations linearized in xm using the direct diagonalization

method in ( thin lines in Fig. 10). The correct quadrature

line shapes, with distortion due to non-linear modulation

frequency effects (Fig. 11, solid lines), are quite different in

the appearance from the filter predicitons. There are two

possible sources that account for the poor agreement of

the predicted quadrature signals in Figs. 10 and 11 with

the exact calculations. Linearization of the Bloch equa-
tion with respect to modulation frequency involved two

distinct approximations. First, only terms linear in the

matrixW are retained (see definitions in Appendix). This

is because the matrix W contains a factor of xm. W pos-

sesses an additional dependence on xm through the satu-
ration term Sn ¼ ðch1Þ2=ððnxmÞ2 þ R2

1Þ. The matrix A has

a similar dependence onSn. The values of ch1 used in all of
the figures above were partially saturating, i.e., S0 � 1.

Decreasing the microwave amplitude ch1 diminishes the

significance of Sn, and so diminishes the significance of

the approximation Sn � S0.

Fig. 12 is completely analogous to Fig. 11 except that

ch1 is diminished in Fig. 12 by two orders of magnitude
from the value used in Fig. 11, so that S0 � 1/104. The

complete agreement found in Fig. 12 between the nu-

merically generated spectra from the continued fraction

method and the filtered low modulation amplitude spec-

tra show that the approximation Sn � S0 is responsible

for the poor agreement in Fig. 11. This stresses the

importance of competition between the value of micro-

wave amplitude ch1, R1, and xm through the factor
Sn ¼ ðch1Þ2=ððnxmÞ2 þ R2

1Þ. If the microwave amplitude

is appreciable enough to make Sn significant, the denom-

inator ðnxmÞ2 þ R2
1 must be dominated by R1 for pseu-

do-modulation and the filters presented herein to

rigorously hold.

In the Appendix, all quadratic terms (nxm)
2 were ne-

glected as part of the linear expansion in modulation fre-

quency. At the same time, however, all harmonics were
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included. The physicality of the linear expansion in xm

is determined by the magnitude of the neglected higher

order terms. The number of Fourier harmonics that

contribute to the signal is influenced by the direct factor

of xm in the definition of W, as well as the Sn depen-

dence when the higher order terms in the modulation
frequency are included. The method used in the Appen-

dix to analytically solve the Bloch equations is not easily

adapted to calculation of higher terms. The examples in

this section, showing over-modulation with saturation,

demonstrate, however, that the linear approximation is

robust enough to encompass conditions that are often

satisfied in typical EPR (modulation frequencies of

10kHz with saturation, and 100kHz without satura-
tion). The examples in Section 5 show experimental tests

of the filters.
5. Application of modulation filters to experimental CW

spectra

Two systems were chosen to experimentally test the
filters shown in Fig. 1. The first system is a double

stranded 50-mer DNA fragment that is 15N spin labeled.

The DNA spectra shown here were acquired at room

temperature. The preparation of the DNA is described

elsewhere [20]. The dynamics of the DNA spin label

are well characterized [20]. The second system studied

is [15N]maleimide spin labeled bovine serum albumin

(BSA) at 2 �C in 60% glycerol/water and 0.1mM. Spin
labeled BSA has been well studied and an isotropic rota-

tional correlation time of 1ls has been assigned under

these conditions [21].

5.1. Results

Figs. 13–15 show the in-phase first harmonic and sec-

ond harmonic absorption spectra of the 50-mer DNA
under low microwave amplitude (0.04G). The experi-

mental spectra are shown in light solid lines. The top

spectra are obtained with modulation amplitude of 1G

and a modulation frequency of 15kHz. The bottom

spectra have 5G modulation amplitude and 62kHz

modulation frequencies. The dark solid lines (bottom)

are the result of applying f11 (Fig. 13), f12 (Fig. 14) or

f22 (Fig. 15) to the top spectrum in each figure using
the filter modulation width hm = 5G.

Figs. 16 and 17 are the in-phase first and second har-

monic absorption obtained with higher microwave am-

plitude (h1 = 0.36G), and are the high microwave

amplitude analogs of Figs. 13 and 14. Fig. 18 is the sec-

ond harmonic quadrature signal and the filter prediction

obtained from the first harmonic quadrature signal by

f12 (see Fig. 1).
Figs. 19–21 show the in-phase first harmonic absorp-

tion and quadrature second harmonic absorption spec-
tra of 15N labeled BSA in 60% glycerol at 2 �C.
Experimental spectra are shown with light lines, and

were acquired with 0.34G microwave amplitude and

50kHz modulation frequency. The modulation ampli-

tudes of the top spectra are 0.5G, and the modulation

amplitudes of the bottom spectra are 3.88G. The dark
lines (bottom) are obtained by applying f11 (Fig. 19),

f12 (Fig. 20) or f22 (Fig. 21) to the top spectra.

The applications of the various filters to the low mod-

ulation spectrum illustrate that the filters reduce the

noise in the spectrum (see in particular Figs. 15 and

21). Fig. 22 compares the use of filter f22 with a quadrat-

ic Savitzky–Golay filter [22].

5.2. Discussion of results

The application of the three modulation filters shown

in Fig. 1 to the in-phase and quadrature first and second

harmonic absorption signals of the 50-mer DNA are re-

markable in several respects. The signals obtained by fil-

tering the low modulation experimental spectra show

excellent agreement with their experimentally over-mod-
ulated counterparts, which have a 62kHz modulation

frequency. The only input parameter to the filter func-

tion is the modulation width. The width was chosen to

be the experimental modulation amplitude, which was

pre-calibrated by over-modulating a single narrow reso-

nance line [16]. The amplitude of the over-modulated

signal is correctly predicted based solely on the low

modulation input; there was no arbitrary scale adjust-
ment of the filter outputs in the above figures. The input

to the filter assumes that that the ‘‘low’’ modulation in-

put is acquired with sufficiently small modulation ampli-

tude that the spectrum approximates the derivative of

the un-modulated signal. In practice, this means that

the shape of the signal should not change if the modula-

tion amplitude is lowered. The filters cannot be applied

to an already over-modulated line shape, because they
are non-additive. For example, a filter with a 5G width

could not be applied to the bottom spectrum in Fig. 13

(experimental modulation amplitude of 5G) to produce

the 10G over-modulated spectrum. A modulation am-

plitude of 1G was used as the low modulation condition

for the spin labeled DNA, because no distortion was ob-

served at lower values of the modulation amplitude. The

first harmonic low modulation input to the filter must be
scaled by the experimental modulation amplitude that

was used to acquire the low modulation input, and the

low modulation amplitude second harmonic input must

be scaled by the square of the experimental modulation

amplitude. The results from the DNA sample demon-

strate that the conventional EPR signal contains all of

the information present in the over-modulated higher

modulation frequency signal. The low modulation quad-
rature signals must be rescaled by the ratio of experi-

mental modulation frequencies when used as an input



Fig. 14. In-phase first harmonic and second harmonic absorption spectrum of 15N spin labeled DNA, room temperature. Light lines are

experimental spectra with h1 = 0.04G. (Top) First harmonic absorption, hm = 1G and xm/2p = 15kHz. (Bottom) Second harmonic absorption,

hm = 5G and xm/2p = 62kHz . The dark solid line (bottom) is the result of applying f12 (see Eq. (8) and Fig. 1) to the first harmonic spectrum (top)

with filter width hm = 5G.

Fig. 13. In-phase first harmonic absorption spectrum of 15N spin labeled DNA, room temperature. Light lines are experimental spectra with

h1 = 0.04G. (Top) hm = 1G and xm/2p = 15kHz. (Bottom) hm = 5G and xm/2p = 62kHz . The dark solid line (bottom) is the result of applying f11
(see Eq. (6) and Fig. 1) to the top spectrum with filter width hm = 5G.
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to the modulation filters (see Eqs. (12) and (13)) if the

filtered signal is to be compared with the higher frequen-

cy signal on the same absolute scale.

The examples shown illustrate the noise-filtering capa-
bilities of the modulation filters. We suggest that the fil-

ters exhibited here could be used in place of common
noise filters such as the Savitzky–Golay filter (see Fig.

22) or the 1–2–1 filter [22]. In this way spectra could be

filtered for noise reduction, and any possible distortion

would be manifest as over-modulation. Fig. 14 shows
that the noise is reduced and the over-modulated signal

is reproduced. More importantly, Fig. 14 shows that



Fig. 15. In-phase second harmonic absorption spectrum of 15N spin labeled DNA, room temperature. Light lines are experimental spectra with

h1 = 0.04G. (Top) hm = 1G and xm/2p = 15kHz. (Bottom) hm = 5G and xm/2p = 62kHz. The dark solid line (bottom) is the result of applying f22
(see Eq. (9) and Fig. 1) to the top spectrum with filter width hm = 5G.

Fig. 16. In-phase first harmonic absorption spectrum of 15N spin labeled DNA, room temperature. Light lines are experimental spectra with

h1 = 0.36G. (Top) hm = 1G and xm/2p = 15kHz. (Bottom) hm = 5G and xm/2p = 62kHz. The dark solid line (bottom) is the result of applying f11
(Eq. (6) see Fig. 1) to the top spectrum with filter width hm = 5G.
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the modulation filter f12 (see Fig. 1) is able to reproduce

the second harmonic signal with only the information
contained in the under-modulated first harmonic signal

as an input. Not only is over-modulation taken into ac-

count properly, but also the over-modulated second har-

monic signal is shown to contain no more information

than is in the under-modulated first harmonic signal.
The example using BSA (Fig. 20), however, shows how

the filter, f12, relating the first and second harmonic sig-
nals breaks down when STEPR conditions apply. Final-

ly, the DNA spectra used here are a rigorous test of the

filter methods. The DNA spectra cannot be simulated

by the simple Bloch equation, because the spectra are

not in the fast-motion regime [20]. A proper simulation



Fig. 17. In-phase first harmonic and in-phase second harmonic absorption spectrum of 15N spin labeled DNA, room temperature. Light lines are

experimental spectra with h1 = 0.36G. (Top) First harmonic absorption, hm = 1G and xm/2p = 15kHz. (Bottom) second harmonic absorption,

hm = 5G and xm/2p = 62kHz. The dark solid line (bottom) is the result of applying f12 (see Eq. (8) and Fig. 1) to the first harmonic spectrum (top)

with filter width hm = 5G.

Fig. 18. Quadrature first harmonic and quadrature second harmonic absorption spectrum of 15N spin labeled DNA, room temperature. Light lines

are experimental spectra with h1 = 0.36G. (Top) First harmonic absorption, hm = 1G, and xm/2p = 15kHz. (Bottom) Second harmonic absorption,

hm = 5G and xm/2p = 62kHz. The dark solid line (bottom) is the result of applying f12 (see Eq. (8) and Fig. 1) to the first harmonic spectrum (top)

with filter width hm = 5G.
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of the DNA spectrum would have to account for the in-
fluence of global dynamic modes (tumbling of the DNA

about its center of mass) and the local motion (bending

and flexing of the DNA). The fact that the spectra repre-

sent the influence of multiple dynamic processes, yet are

still amenable to simple filtration to account for over-
modulation is remarkable, and testifies to the fact that
the effect of modulation on the DNA spectra is not dy-

namic but is simply an averaging of the low modulation

spectrum. The fact that the in-phase absorption signals

are filterable at low and high microwave amplitude does

not completely test the filter methods (see Section 4). The



Fig. 20. Quadrature first harmonic absorption and quadrature second harmonic absorption spectra of 15N \BSA in 60% glycerol/water at 2 �C. Light
lines are experimental spectra with h1 = 0.34G. (Top) First harmonic absorption, hm = 0.5G and xm/2p = 50kHz. (Bottom) Second harmonic

absorption, hm = 3.88G and xm/2p = 50kHz . The dark solid line (bottom) is the result of applying f12 (see Eq. (8) and Fig. 1) to the first harmonic

spectrum (top) with filter width hm = 3.88G.

Fig. 19. In-phase first harmonic absorption spectrum of 15N BSA in 60% glycerol/water at 2 �C. Light lines are experimental spectra with h1 = 0.34G.

(Top) hm = 0.5G and xm/2p = 50kHz. (Bottom) hm = 3.88G and xm/2p = 50kHz . The dark solid line (bottom) is the result of applying f11 (Eq. (6)

see Fig. 1) to the top spectrum with filter width hm = 3.88G.
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quadrature signals are more sensitive to the influence of

dynamics and modulation frequency. The f12 filter was

tested on the DNA sample using the first harmonic un-

der-modulated quadrature signal (Fig. 18). The under-

modulated second harmonic quadrature signal did not

posses sufficient signal-to-noise to give meaningful pre-
dictions using f22 for the DNA sample. The f22 filter

was tested, however, on the second harmonic quadrature

signal of spin labeled BSA, where a sufficient under-mod-

ulated second harmonic signal was obtained (Fig. 21).

The spin labeled BSA example gives an important test

of the filter methods. BSA is a protypical example of a



Fig. 21. Quadrature second harmonic absorption spectrum of 15N BSA in 60% glycerol/water at 2 �C. Light lines are experimental spectra with

h1 = 0.34G. (Top) hm = 0.5G and xm/2p = 50kHz. (Bottom) hm = 3.88G and xm/2p = 50kHz. The dark solid line (bottom) is the result of applying

f22 (see Eq. (9) and Fig. 1) to the top spectrum with filter width hm = 3.88G.

Fig. 22. Quadrature second harmonic absorption spectrum of 15N BSA in 60% glycerol/water at 2 �C. (Top) Experimental spectrum with h1 = 0.34G,

hm = 0.5G, and xm/2p = 50 kHz. (Middle) Application of f22 (see Eq. (9) and Fig. 1) to the top spectrum with filter width hm = 1G. (Bottom)

Application to the top spectrum of a quadratic Savitzky–Golay filter with a width of 1G.
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spin labeled biological molecule that has been studied by

STEPR [23]. A non-trivial influence of modulation fre-

quency should therefore be observable in the spin labeled

BSA STEPR spectrum. The agreement found in Fig. 19,

where the f11 is applied to the first harmonic in-phase
spectrum, is not surprising given the success of the filter
methods on the DNA spectra; but provides another dem-

onstration that the filter is applicable with a modulation

frequency as high as 50kHz. Fig. 20 shows that the filter

prediction of the second harmonic quadrature signal, us-

ing the first harmonic quadrature spectrum as an input,
does not agree with the experimentally acquired second
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harmonic spectrum. The filter prediction resembles the

low modulation frequency second harmonic quadrature

spectrum (not shown). The latter result is similar to the

conclusion drawn from Fig. 11 in Section 4. Fig. 20 illus-

trates that the quadrature second harmonic (STEPR)

spectrum contains information that is not reproducible
from the first harmonic spectrum. Fig. 21 shows the ap-

plication of f22 to the experimental under-modulated

quadrature second harmonic spectrum of BSA (top).

The filtered prediction is in excellent agreement with

the experimental over-modulated second harmonic spec-

trum (bottom), especially considering the noise of the in-

put spectrum. Figs. 20 and 21 show that while the f12
filter (applied to the first harmonic to obtain the second
harmonic) may fail, the f22 filter from under-modulated

second harmonic to over-modulated second harmonic

gives a reasonable prediction of the effect of modulation.

STEPR simulations that include a full treatment of mo-

lecular motion are often restricted to the low modulation

amplitude limit because of the computational cost of in-

cluding modulation. The empirical success of the filter f22
is promising. Theoretical STEPR quadrature signals can
be filtered to account for the effect of over-modulation

with minimal computational cost once the low modula-

tion amplitude spectrum is simulated using conventional

STEPR codes. This procedure has the potential to in-

crease the efficiency of global optimization routines such

as gradient searches, wherein many successive executions

of the simulation routine are required. Once a best fit is

found with the filter technique, a more accurate simula-
tion that includes modulation directly [6,7] can be used

to check the quality of the fit and further optimize the

simulation.
6. Conclusions

Pseudo-modulation was reviewed in its original form.
It was shown that pseudo-modulation is equivalent to a

filter acting upon the low modulation amplitude limit

spectrum. Pseudo-modulation was justified from the

Bloch equation by analytic direct diagonalization of

the infinite matrix form of the Bloch equation. The latter

method allowed for the dispersion signal to be incorpo-

rated into the formalism of pseudo-modulation. The

quadrature components were expressed, in the linear
limit of modulation frequency, as simple linear functions

of the in-phase absorption and dispersion components

and their derivatives. The expression of the quadrature

spectrum in terms of the in-phase components allowed

the filter form of pseudo-modulation to be carried over

to the quadrature components. Thus, the filter relations

derived from pseudo-modulation were shown to cover

the complete effect of modulation amplitude for all pos-
sible signals in the linear limit of modulation frequency.

The possible applications and attendant complications
of using the filter methods outside of the linear modula-

tion frequency domain were illustrated numerically.

The use of the filter methods for quadrature signals

of STEPR spectra was discussed and demonstrated by

application to both numerically and experimentally

generated spectra. We found that the effect of over-mod-
ulation on in-phase signals was robustly captured by the

filter functions, even for modulation frequencies as high

as 50kHz. The accuracy of filtered quadrature signals

was observed to be more sensitive to deviation from

the linear modulation frequency regime, especially at

higher microwave powers, as anticipated from depen-

dence of the microwave saturation contribution on the

harmonic of modulation. The experimental tests of the
filters suggest that over-modulation can be accounted

for by applying the filters that act on the same harmonic

as the target spectrum.
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Appendix A

The Bloch equation can be written in matrix form,

with the additional modulating field included [9]. The

Bloch equation is simplified by transforming to an exter-
nal coordinate frame that precesses with the microwave

frequency x about the ẑ axis.

d

dt

~Mx

~My

~Mz �M0

0
B@

1
CA

¼
�R2 Dþ chm

2
� cos xm � tð Þ 0

�D� chm
2
� cos xm � tð Þ �R2 ch1
0 �ch1 �R1

0
B@

1
CA

�
~Mx

~My

~Mz �M0

0
B@

1
CAþ

0

ch1 �M0

0

0
B@

1
CA:

ðA:1Þ
The components of the magnetization are expanded in a

Fourier series consisting of the harmonics of xm.

~MxðtÞ
~MyðtÞ

~MzðtÞ�M0

0
B@

1
CA

¼
X1
r¼0

cosðn �xm � tÞ �
Dispn

Absn

Longn

0
B@

1
CAþsin n �xm � tð Þ �

Disp0
n

Abs0n

Long0n

0
B@

1
CA:
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The Fourier coefficients are labeled Dispn for the nth co-

sine (in-phase) harmonic of the dispersion signal and

Disp0
n for the nth sine (quadrature) harmonic of the dis-

persion signal. Likewise, Absn stands for the harmonics

of absorption, and Longn for the harmonics of the lon-

gitudinal magnetization. Substitution of the Fourier ex-
pansion into the Bloch equation and projection of the

sine and cosine components gives an infinite set of cou-

pled linear equations for the Fourier coefficients. It is

convenient to generalize the index n to negative values.

This just reproduces the in-phase coefficients

(Absn = Abs�n), and gives the negative of the quadra-

ture coefficients ðAbs0n ¼ �Abs0nÞ. The resulting equation
for the in-phase and quadrature Fourier coefficients of
absorption and dispersion is [9]:

ðAþWþHÞ � v ¼ Z0; ðA:2Þ

where

v ¼

..

.

v�1

v0
v1

..

.

0
BBBBBBBB@

1
CCCCCCCCA
; vn ¼

Absn

Dispn

Disp0
n

�Abs0n

0
BBB@

1
CCCA; Z0 ¼

..

.

0

ch1 �M0 � dn;0
0

0

..

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA

..
0 1
A ¼

. 0 0 0 0

0 A�1 0 0 0

0 0 A0 0 0

0 0 0 A1 0

0 0 0 0 . .
.

BBBBBBBB@

CCCCCCCCA
;

D �R 0 0
0 1
An ¼
2

R2 þ R1 � Sn D 0 0

0 0 D � R2 þ R1 � Snð Þ
0 0 R2 D

BB@ CCA
with Sn = (ch1)
2/((nxm)

2 + (R1)
2)
W ¼

. .
.

0 0 0 0

0 W�1 0 0 0

0 0 W0 0 0

0 0 0 W1 0

0 0 0 0 . .
.

0
BBBBBBBB@

1
CCCCCCCCA
;

Wn ¼

0 0 nxm 0

0 0 0 nxm 1� Snð Þ
nxm 1� Snð Þ 0 0 0

0
BB@

1
CCA;
0 nxm 0 0
H ¼

. .
.

Hm 0 0

Hm 0 Hm 0

0 Hm 0 Hm

0 0 Hm
. .
.

0
BBBBB@

1
CCCCCA; Hm ¼ chm

4
�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA:

The infinite set of equations described by (A.2) can be con-

verted to a matrix continued fraction consisting of 4 · 4
matrices. The matrix continued fraction is solved numer-

ically by iteration assuming the continued fraction con-

vergents become stable for large enough value of n [9].

The matrix A + W + H may be re-written using the

nth convergent.

AþWþH ¼

. .
.

Hm 0 0 0

Hm A0 þW0 Hm 0 0

0 Hm A1 þW1
. .
.

0

0 0 . .
. . .

.
Hm

0 0 0 Hm Cn

0
BBBBBBBBB@

1
CCCCCCCCCA
:

The Cn � 1 convergent is written in terms of Cn by

Gaussian elimination.

Cn�1 ¼ An�1 þWn�1ð Þ �H2
m � Cnð Þ�1

: ðA:3Þ

This recurrence terminates at the n = 0 index because the

elements of v for negative index are not independent but
Absn = Abs�n, Abs0n ¼ �Abs0�n, etc.The recurrence (A.3)

is the matrix continued fraction algorithm that allows

for iterative numerical solution. To begin the recurrence,

it is assumed that for some large N the value of CN is sta-

ble, i.e., CN = CN + 1=� � � Eq. (A.3) then becomes a

closed relation for CN and gives:

CN ¼ AN þWN

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AN þWN

2

� �2

�H2
m

s
;

where the square root operation on matrices is interpret-

ed in the eigenvalue sense. This is the continued fraction

iteration.

In the direct diagonalization approach Eq. (A.2) is
solved directly by truncating the infinite dimensional

matrices A,W, and H. Then, Eq. (A.2) is solved by stan-

dard diagonalization to give:

v ¼ ðAþWþHÞ�1 � Z0: ðA:4Þ
We desire a solution to first order in xm. To first order in

W, the solution is given by:

v ¼ ððAþHÞ�1 � ðAþHÞ�1 �W � ðAþHÞ�1Þ � Z0

ðA:5Þ
at the same time A simplifies because Sn = S0 to first or-

der in xm, and A is made of 4 · 4 blocks of A0.

The structure of the matrix (A + H)�1 is essential for

an understanding of how the solution relates to the
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pseudo-modulation formula.The sub-matrix A0 is diago-

nalized by UA0
:

UA0
¼ 1ffiffiffi

2
p

0 0 iR2

R0
2

1

iR0
2

R2
1 0 0

0 0 � iR2

R0
2

1

� iR0
2

R2
1 0 0

0
BBBBBB@

1
CCCCCCA

and

UA0
A0U�1

A0
¼

�iR0
2 þ D 0 0 0

0 �iR0
2 þ D 0 0

0 0 iR0
2 þ D 0

0 0 0 iR0
2 þ D

0
BBB@

1
CCCA;

where R0
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ R1R2S0

q
.

Diagonalization of A may be carried out without af-

fecting H, and likewise H may be diagonalized indepen-
dently of A. This commutivity exists because the

structure of A has been simplified considerably by the

assumption Sn = S0, and A consists of the sub-matrix

A0 repeated on the diagonal of A. Furthermore, H con-

sists of 4 · 4 identity matrices repeated along sub- and

super-diagonals.In summary:

½AþH� ¼ UHUAðAþHÞU�1
A U�1

H

¼ UAUHðAþHÞU�1
H U�1

A ¼ ½A� þ ½H�;

where [ ] denotes the diagonal frame of a matrix. Now,

[A] + H behaves as a set of four decoupled uniform tri-

diagonal matrices, and the eigenvalues of [A] + H are

the sum of the eigenvalues of A and H. The diagonaliz-

ing matrix of H (for any finite truncation) may be writ-

ten in sub-blocks consisting of the 4 · 4 unit matrix

multiplied by the tri-diagonal eigenvector element com-
mon to all four decoupled tri-diagonal matrices. The ei-

genvalues and eigenvectors of a uniform tri-diagonal

matrix are trigonometric, with trigonometric eigen-

values [24]. A finite truncation of the matrix necessitates

boundary conditions; these fix both the eigenvectors and

eigenvalues such that they may be indexed by two num-

bers (the infinite matrix itself, considered in an l1 ba-

nach space has a uncountable set of eigenvalues and
eigen vectors). Here, the indices have been written to

conform with the enumeration of the harmonics.

UH ¼

. .
. ..

.
q

v�1;�1 � I4 v�1;0 � I4 v�1;1 � I4
� � � v0;�1 � I4 v0;0 � I4 v0;1 � I4 . . .

v1;�1 � I4 v1;0 � I4 v1;1 � I4

q ..
. . .

.

0
BBBBBBBB@

1
CCCCCCCCA
;

ðA:6Þ
where I4 is the 4 · 4 identity matrix.For a truncation

that contains harmonics up to ±N, the elements are:
vn;m ¼ 1ffiffiffiffiffiffiffi
Nþ1

p sin p
2ðNþ1Þ � ðN þ 1� nÞ � ðN þ 1� mÞ
� �

. The

columns are eigenvectors of H with the eigenvalues
chm
2

sin p
2ðNþ1Þ n
� �

. The inverse of UH is simply given by

transposition [24].We now compute:

ðAþHÞ�1 ¼ U�1
H U�1

A

1

½A� þ ½H�UAUH:

Evaluation of of U�1
A

1
½A�þ½H�UA is as follows:

1

½A� þ ½H� ¼

. .
.

0 0 0 0 q

0 1
ak

0 0 0 0

0 0 1
ak

0 0 0

0 0 0 1
bk

0 0

0 0 0 0 1
bk

0

q 0 0 0 0 . .
.

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; ðA:7Þ

1

ak
¼ 1

�iR0
2 þ Dþ chm

2
sin kp

2Nþ2

� � ;
1

bk
¼ 1

iR0
2 þ Dþ chm

2
sin kp

2Nþ2

� � ;
where k is the index which labels the unique tri-diagonal

eigenvector elements v, and N is the largest index for a fi-

nite truncation of A + H. By direct computation using

UA:

U�1
A

1

½A�þ ½H�UA

¼

. .
.

0 0 0 0 q

0 1
2

1
ak
þ 1

bk

� �
� i

2
R2

R0
2

1
ak
� 1

bk

� �
0 0 0

0 i
2

R0
2

R2

1
ak
� 1

bk

� �
1
2

1
ak
þ 1

bk

� �
0 0 0

0 0 0 1
2

1
ak
þ 1

bk

� �
� i

2

R0
2

R2

1
ak
� 1

bk

� �
0

0 0 0 i
2
R2

R0
2

1
ak
� 1

bk

� �
1
2

1
ak
þ 1

bk

� �
0

q 0 0 0 0 . .
.

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

ðA:8Þ
(A + H)�1 now has the following form, letting Mk

represent the 4 · 4 sub-matrices of (A.8) and using
UH:

ðAþHÞ�1 ¼ U�1
H

. .
.

0 0 0 q
0 M�1 0 0 0

0 0 M0 0 0

0 0 0 M1 0

q 0 0 0 . .
.

0
BBBBBBBB@

1
CCCCCCCCA
UH:
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Using the form of UH, (A.6), the general 4 · 4 sub-ma-

trix (i, j) of (A + H)�1 that results from this multiplica-

tion is given by:

ðAþHÞ�1

i;j ¼
XN
�N

vi;nMnvn;j:

For truncation of the matrix at the Nth harmonic this

sum is:

ðAþHÞ�1

i;j ¼ 1

N þ 1

XN
�N

sin
p

2 N þ 1ð Þ � N þ 1� ið Þ
�

� N þ 1� nð ÞÞMn
chm
2

sin
np

2N þ 2

� �� �

� sin
p

2 N þ 1ð Þ � N þ 1� nð Þ � N þ 1� jð Þ
� �

:

This expression, using the functions defined by M, gives

all of the signals up to the Nth harmonic to zero order

in xm. The signals to zero order are obtained as

v = (A + H)�1 Æ Z0 (see (A.5)). The equilibrium solution

Z0 on the right hand side selects only the column con-

taining the j = 0, 4 · 4 sub-matrices. The signals are thus
given by:

vi ¼
1

N þ 1

XN
�N

sin
p

2 N þ 1ð Þ � N þ 1� ið Þ � N þ 1� nð Þ
� �

�Mn
chm
2

sin
np

2N þ 2

� �� �
sin

p
2
� N þ 1� nð Þ

� �
:

Shifting the summation index by N + 1 and using trigo-

nometric identities:

vi ¼
1

N þ 1

X2Nþ1

1

1

2
1� cosðnpÞð Þ cos pni

2ðN þ 1Þ

� �

�Mn
chm
2

cos
np

2N þ 2

� �� �
: ðA:9Þ

The term (1 � cos(np)) eliminates the even points of

summation. The only dependence of Mn on the index

n is through the modulation term, the functional form

of the Mn is the same otherwise. So that, in the limit
as N ›1:

vi ¼
1

p

Z p

0

cos ihð ÞM chm
2

cos hð Þ
� �

dh: ðA:10Þ
Eq. (A.10) is of the form of (1) in the main text.

Expression of M as the Fourier transform of a

function in the time domain will reveal the Bessel func-

tion dependence vi. All the nonzero elements of the ma-

trix M are the real or imaginary components of the basic

complex Lorentzian lineshape 1=ðDþ chm
2

cosðhÞ þ iR0
2Þ

(see (A.7)).
In-phase signals are, therefore, given by:

viðDÞ /
Z 1

0

e�R0
2
t 1

p

Z p

0

cosðihÞei�
chm
2

cosðhÞð Þ�t dh

 �

�
cos D � tð Þ
sin D � tð Þ

� �
dt:

But,

Jn
hm
2
t

� �
¼

Re

Im

� �neven

nodd

ðiÞn

p

Z p

0

cos n �hð Þei�
chm
2
�tð Þcos hð Þdh

� �
:

ðA:11Þ

(See Watson, Treatise on Bessel functions [15, p. 21 Eqs.

(8) and (9)], these two equations are combine by extend-

ing the integration range from p/2 to p). The contribu-
tion (A.11) to the integral (A.10) was tested against

the discrete sum (A.9) numerically in Matlab using the

built-in Bessel functions [19].This gives the form re-

quired by pseudo-modulation (see Eq. (4)):
viðDÞ /
Z 1

0

e�R0
2
tJ n

chm
2

t
� �

cos D � tð Þ
sin D � tð Þ

� �
dt:
To calculate the quadrature signals to first order in mod-

ulation frequency, all of the summed expressions

ðAþHÞ�1

i;j ¼
PN

�Nvi;nMnvn;j must be calculated because

is it is the zeroth harmonic column of the perturbation

term (A + H)�1 ÆW Æ (A + H)�1 that will be selected

by Z0, to give the quadrature signals (see (A.5)). The
general elements ðAþHÞ�1

i;j may be calculated in analo-

gy to the derivation above.

lim
N!1

ðAþHÞ�1

i;j

¼ 1

p

Z p

0

cosðihÞ cosðjhÞM chm
2

cosðhÞ
� �

dh

þ 1

p

Z p

0

sinðihÞ sinðjhÞM chm
2

cosðhÞ
� �

dh

¼ 1

p

Z p

0

cosðði� jÞhÞM chm
2

cos hð Þ
� �

dh:

The procedure of passing to the conjugate Fourier

space that was used above shows that the general 4 · 4

sub-matrices of (A + H)�1 are thus just sin and cos

components of the Bessel–Fourier integral transform

of a simple exponential function with R0
2 rate. The

order of the Bessel function in each sub-matrix is i � j.
The structure of (A + H)�1 can explicitly be dis-

played. Note that the notation adopted here should

not be confused with final absorption and dispersion

line shapes, but is chosen here to emphasize the sub-

components that make these up. The use of primed let-

ters in the definition of the matrix elements of (A + H)�1

should not be confused with the similar notation for

quadrature signals.
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AþHð Þ�1 ¼

. .
.

q
D0 A0 0 0 D�1 A�1 0 0 D�2 A�2 0 0

�A0
0 D0 0 0 �A0

�1 D�1 0 0 �A0
�2 D�2 0 0

0 0 D0 A0
0 0 0 D�1 A0

�1 0 0 D�2 A0
�2

0 0 �A0 D0 0 0 �A�1 D�1 0 0 �A�2 D�2

D1 A1 0 0 D0 A0 0 0 D�1 A�1 0 0

�A0
1 D1 0 0 �A0

0 D0 0 0 �A0
�1 D�1 0 0

0 0 D1 A0
1 0 0 D0 A0

0 0 0 D�1 A0
�1

0 0 �A1 D1 0 0 �A0 D0 0 0 �A�1 D�1

D2 A2 0 0 D1 A1 0 0 D0 A0 0 0

�A0
2 D2 0 0 �A0

1 D1 0 0 �A0
0 D0 0 0

0 0 D2 A0
2 0 0 D1 A0

1 0 0 D0 A0
0

0 0 �A2 D2 0 0 �A1 D1 0 0 �A0 D0

q . .
.

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where

An ¼ � i

2

R2

R0
2

1

p

Z p

0

cosðnhÞ

� 1

�iR0
2þDþ chm

2
cosðhÞ

� 1

iR0
2þDþ chm

2
cosðhÞ

 !
dh

¼R2

R0
2

1

p

Z p

0

cosðnhÞ

�
Z 1

0

e�R0
2
t e

i� Dþchm
2

cosðhÞð Þ�tþ e�i� Dþchm
2

cosðhÞð Þ�t

2
dtdh

¼ðiÞn

2

R2

R0
2

Z 1

�1
e�R0

2
tj jJn

chm
2

t
� �

ei�D�tdt;

An ¼ ðiÞn R2

R0
2

R1
0

e�R0
2
tJ n

chm
2
t

� 	 cos D � tð Þ
i � sin D � tð Þ

� �n even

n odd

dt:

ðA:12Þ

A0
n is formed from An by R2=R0

2 ! R0
2=R2 in the prefactor

of the integral.
Dn ¼
1

2

1

p

Z p

0

cosðnhÞ

� 1

�iR0
2þDþ chm

2
cosðhÞ

þ 1

iR0
2þDþ chm

2
cosðhÞ

 !
dh

¼ 1

p

Z p

0

cos nhð Þ

�
Z 1

e�R0
2
t e

i� Dþchm
2

cos hð Þð Þ�t� e�i� Dþchm
2

cos hð Þð Þ�t
dtdh;
0 2i
Dn ¼ ðiÞn
R1
0

e�R0
2
tJ n

chm
2
t

� 	 sin D � tð Þ
�i � cos D � tð Þ

� �n even

n odd

dt:

ðA:13Þ
The 4 · 4 sub matrices of (A + H)�1 Æ W Æ (A + H)�1 may

be written as the summation:

AþHð Þ�1 �W � AþHð Þ�1
� �

i;j

¼
X
n

Di�n Ai�n 0 0

�A0
i�n Di�n 0 0

0 0 Di�n A0
i�n

0 0 �Ai�n Di�n

0
BBB@

1
CCCA

�

0 0 nxm 0

0 0 0 nx0
m

nx0
m 0 0 0

0 nxm 0 0

0
BBB@

1
CCCA

�

Dn�j An�j 0 0

�A0
n�j Dn�j 0 0

0 0 Dn�j A0
n�j

0 0 �An�j Dn�j

0
BBB@

1
CCCA;
where nx0
m ¼ nxmð1� S0Þ

¼
X
n

n
0 Q0

n

Qn 0

� �

Qn ¼
x0

mDi�nDn�j�xmA
0
i�nA

0
n�j x0

mDi�nAn�jþxmA
0
i�nDn�j

�x0
mAi�nDn�j�xmDi�nA

0
n�j �x0

mAi�nAn�jþxmDi�nDn�j

 !
;

Q0
n ¼

xmDi�nDn�j�x0
mAi�nAn�j xmDi�nA

0
n�jþx0

mAi�nDn�j

�xmA
0
i�nDn�j�x0

mDi�nAn�j �xmA
0
i�nA

0
n�jþx0

mDi�nDn�j

 !
:
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When Z0 is applied to (A + H)�1(A + H)�1 Æ W Æ
(A + H)�1, the quadrature signals are:

�Abs0iðDÞ ¼
X
n

x0
mAi�nAn � xmDi�nDn

� 	
and

Disp0
iðDÞ ¼ �

X
n

x0
mDi�nAn þ xmA

0
i�nDn

� 	
:

Taking non-saturated absorption as a first example, the

definitions in terms of integrals over Bessel functions

may be substituted. If saturation is negligible for both

the x0
m and R0

2 terms then:

�Abs0iðDÞ ¼ �A0
iðDÞ

¼ ið Þixm �
X
n

n
Z 1

0

Z 1

0

e�R2 t1þt2ð ÞJ i�n
chm
2

t1

� ��

� Jn
chm
2

t2

� �
cos D � t1ð Þ
i sin D � t1ð Þ

� �i�n even

i�n odd

�
cos D � t2ð Þ
i sin D � t2ð Þ

� �n even

n odd

dt1 dt2 �
Z 1

0

Z 1

0

e�R2 t1þt2ð Þ

� J i�n
chm
2

t1

� �
Jn

chm
2

t2

� �
sin D � t1ð Þ

�i cos D � t1ð Þ

� �i�n even

i�n odd

�
sin D � t2ð Þ

�i cos D � t2ð Þ

� �n even

n odd

dt1 dt2

�
:

For the case i is even, then (i � n) even (odd) iff n

even (odd). For i odd then (i � n) even (odd) iff n

odd (even).

�A0
iðDÞ ¼ ið Þixm

Z 1

0

Z 1

0

e�R2 t1þt2ð Þ

�
X
n

n J i�n
hm
2
t1

� �
Jn

hm
2
t2

� �� �

�
cos D � t1 þ t2ð Þð Þ
i � sin D � t1 þ t2ð Þð Þ

� �i even

i odd

dt1 dt2:
To evaluate
P

nnðJ i�nðchm2 t1ÞJnðchm2 t2ÞÞ the limit as

N ›1 is applied, so that the sum is over all positive

and negative n. Then use the recurrence relation for

Bessel functions, Jnþ1ðzÞ þ Jn�1ðzÞ ¼ 2n
z J nðzÞ andP

nJnðz1ÞJm�nðz2Þ ¼ Jmðz1 þ z2Þ [15]:

�A0
iðDÞ ¼ ið Þixm

Z 1

0

Z 1

0

e�R2 t1þt2ð Þ i � t2
t1 þ t2

� �
J i

chm
2

t1 þ t2ð Þ
� �

�
cos D � t1 þ t2ð Þð Þ
i � sin D � t1 þ t2ð Þð Þ

� �i even

i odd

dt1 dt2

¼ i � ið Þixm

Z 1

0

t2

Z 1

t2

e�R2t
1

t

� �
J i

chm
2

t
� �

�
cos D � tð Þ� �i even

dtdt2:

i � sin D � tð Þ i odd
Integrating by parts:

¼ i � ið Þixm

Z 1

0

t
2
� e�R2tJ i

chm
2

t
� �

cos D � tð Þ
i � sin D � tð Þ

� �i even

i odd

dt

and
A0
iðDÞ ¼ �i � ðiÞi xm

2
o
oD

R1
0

e�R2tJ i
chm
2
t

� 	
�

sin D � tð Þ
�i � cos D � tð Þ

� �i even

i odd

dt

¼ � ixm

2

o

oD
DiðDÞ:
Likewise

D0
iðDÞ ¼ �i � ið Þixm

R1
0

t2
R1
t2

e�R2t 1
t

� 	
J i

chm
2
t

� 	
�

sin D � tð Þ
�i � cos D � tð Þ

� �i even

i odd

dtdt2

and
D0
iðDÞ ¼ i � ðiÞi xm

2
o
oD

R1
0

e�R2tJ i
chm
2
t

� 	
�

cos D � tð Þ
i � sin D � tð Þ

� �i even

i odd

dt

¼ ixm

2

o

oD
AiðDÞ:
These are the answers without saturation, saturationmay

be included, however, by re-working the above deriva-

tion.

�Abs0iðDÞ ¼ �A0
iðDÞ

¼ ið Þixm

X
n

n K
Z 1

0

Z 1

0

e�R0
2
t1þt2ð ÞJ i�n

chm
2

t1

� ��

� Jn
chm
2

t2

� �
cos D � t1ð Þ
i sin D � t1ð Þ

� �i�n even

i�n odd

�
cos D � t2ð Þ
i sin D � t2ð Þ

� �n even

n odd

dt1 dt2 �
Z 1

0

Z 1

0

e�R0
2
t1þt2ð Þ

� J i�n
chm
2

t1

� �
Jn

chm
2

t2

� �
sin D � t1ð Þ

�i cos D � t1ð Þ

� �i�n even

i�n odd

�
sin D � t2ð Þ

�i cos D � t2ð Þ

� �n even

n odd

dt1 dt2

�
;

where K ¼ ð1� S0Þ R2

R0
2

� �2
. It had to be assumed that

nxm � R1 in the saturation factor (Sn) that had been as-

sociated with x0
m. But, this assumption was already

made for the saturation factor in the A matrix, so it is

in keeping with this previous approximation to assume
Sn fi S0 here, as well.

The sums are now broken up into even and odd sums

over the Bessel functions because the complement to

each even or odd sum is not available from the second
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term any longer due to the presence of the saturation

constant K.

Re ¼
X
m

2mð Þ � J i�2m
chm
2

t1

� �
J 2m

chm
2

t2

� �
;

Ro ¼
X
m

2mþ 1ð Þ � J i� 2mþ1ð Þ
chm
2

t1

� �
J 2mþ1

chm
2

t2

� �
:

If i is even:

�A0
iðDÞ¼ ið Þixm

Z 1

0

Z 1

0

e�R0
2
t1þt2ð Þ

�
K Re � cos Dt1ð Þ � cos Dt2ð ÞþRo ��sin Dt1ð Þ � sin Dt2ð Þð Þ
� Re � sin Dt1ð Þ � sin Dt2ð ÞþRo ��cos Dt1ð Þ � cos Dt2ð Þð Þ


 �
dt1 dt2:

If i is odd:

�A0
iðDÞ¼ ið Þixm

Z 1

0

Z 1

0

e�R0
2
t1þt2ð Þ

�
K Re � i � sin Dt1ð Þ � cos Dt2ð ÞþRo � i � cos Dt1ð Þ � sin Dt2ð Þð Þ
� Re ��i �cos Dt1ð Þ � sin Dt2ð ÞþRo ��i � sin Dt1ð Þ �cos Dt2ð Þð Þ


 �
dt1 dt2:

The even and odd sums may be derived as follows:

Re þ Ro ¼
X
n

n J i�n
chm
2

t1

� �
Jn

chm
2

t2

� �� �

¼ i � t2
t1 þ t2

� �
J i

chm
2

t1 þ t2ð Þ
� �

:

But, using the symmetry of Bessel functions:

Re � Ro ¼
X
n

n � �1ð Þn J i�n
chm
2

t1

� �
Jn

chm
2

t2

� �� �

¼
X
n

n � J i�n
chm
2

t1

� �
Jn � chm

2
t2

� �� �

¼ �i � t2
t1 � t2

� �
J i

chm
2

t1 � t2ð Þ
� �

:

These are applied to give:

�A0
iðDÞ¼ i � ið Þi �xm �

Z 1

0

Z 1

0

e�R0
2
t1þt2ð Þ

� 1þKð Þ
2

t2
t1þ t2

� �
J i

chm
2

t1þ t2ð Þ
� ��

�
cos D t1þ t2ð Þð Þ
i � sin D t1þ t2ð Þð Þ

� �ieven

iodd

þ 1�Kð Þ
2

t2
t1� t2

� �

� J i

chm
2

t1� t2ð Þ
� �

�
cos D t1� t2ð Þð Þ
i � sin D t1� t2ð Þð Þ

� �ieven

iodd

!
dt1dt2:

The first integral is just the term considered above (in

the calculation without saturation), and the result may
be substituted immediately. Changing variables in the

second integral gives:

1�Kð Þ
2

�
Z 1

0

t2e�2R0
2
t2

Z t2

�1
eþR0

2
t�1

t
J i

chm
2

t
� �

�
cos Dtð Þ
i � sin Dtð Þ

� �ieven

iodd

dtdt2:

ðA:14Þ
Now integrate by parts:

¼ 1�Kð Þ
2

� 1

2R0
2

� 	2
Z 0

�1
eþR0

2
t�1

t
J i

chm
2

t
� � 

�
cos Dtð Þ
i � sin Dtð Þ

� �ieven

iodd

dt�
Z 1

0

te�2R0
2
t

�2R0
2

� e�2R0
2
t

2R0
2

� 	2
 !

eþR0
2
t�1

t

� J i

chm
2

t
� �

�
cos Dtð Þ
i � sin Dtð Þ

� �ieven

iodd

dt

!
:

Using the symmetry of Bessel functions under sign the

boundary term from integration by parts (first integral)
cancels the second term of the second integral:

¼ 1� Kð Þ
2

� � 1

2R0
2

�
Z 1

0

e�R0
2
tJ i

chm
2

t
� �

�
cos Dtð Þ
i � sin Dtð Þ

� �i even

i odd

dt

 !
:

Using the previous result for the first part of the A 0 in-

tegral finally gives:

A0
iðDÞ ¼ � ixm

2

ð1þKÞ
2

o
oDDiðDÞ � ð1�KÞ

2R2
AiðDÞ

� �
;

K ¼ ð1� S0Þ
R2

R0
2

� �2

:

ðA:15Þ
Eq. (A.15) is Eq. (12) in the text.

The dispersion is not exactly analogous to the ab-

sorption, because of the opposing symmetry of the trig-

onometric and Bessel functions in its basic definition

(see (A.12) and (A.13) above). Proceeding as with the

calculation of A 0.

D0
iðDÞ¼ � i � ið Þi �xm �

Z 1

0

Z 1

0

e�R0
2
t1þt2ð Þ

�
 

1þKð Þ
2

t2
t1þ t2

� �
J i

chm
2

t1þ t2ð Þ
� �

�
sin D t1þ t2ð Þð Þ

�i � cos D t1þ t2ð Þð Þ

� �ieven

iodd

þ 1�Kð Þ
2

t2
t1� t2

� �

� J i

chm
2

t1� t2ð Þ
� �

�
sin D t1� t2ð Þð Þ

�i �cos D t1� t2ð Þð Þ

� �ieven

iodd

!
dt1dt2:

The first term follows from the previous calculation

without saturation. Change of integration variables in
the second term gives:

1� Kð Þ
2

�
Z 1

0

t2e�2R0
2
t2

Z 1

�t2

e�R0
2
t 1

t
J i

chm
2

t
� �

�
sinðDtÞ

�i � cosðDtÞ

� �i even

i odd

dtdt2

¼ 1� Kð Þ
2

�
Z 1

0

t2e�2R0
2
t2

Z t2

�1
e�R0

2
t 1

t
J i

chm
2

t
� �

�
sin Dtð Þ

�i � cos Dtð Þ

� �i even

i odd

dtdt2: ðA:16Þ
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Note the difference between (A.14) and (A.16). The sym-

metry under sign change of the t integrand is differ-

ent.Integrating (A.16) by parts:

¼ 1� Kð Þ
2

� 1

2R0
2

� 	2
Z 0

�1
eþR0

2
t 1

t
J i

chm
2

t
� � 

�
sin Dtð Þ

�i � cos Dtð Þ

� �i even

i odd

dt �
Z 1

0

te�2R0
2
t

�2R0
2

� e�2R0
2
t

2R0
2

� 	2
 !

� eþR0
2
t 1

t
J i

chm
2

t
� �

�
sin Dtð Þ

�i � cos Dtð Þ

� �i even

i odd

dt

!
:

There is no cross-cancellation of terms, as in the deriva-

tion of (A.15):

¼ 1� Kð Þ
2

� 2

2R0
2

� 	2 �
Z 1

0

e�R0
2
t � 1

t
� J i

chm
2

t
� � 

�
sin Dtð Þ

�i � cos Dtð Þ

� �i even

i odd

dt þ 1

2R0
2

�
Z 1

0

e�R0
2
tJ i

chm
2

t
� �

�
sin Dtð Þ

�i � cos Dtð Þ

� �i even

i odd

dt

!
:

This contains now a component that behaves as the in-

tegral of an absorption signal. Using the definitions of

the basic signals the final answer may be expressed as:

D0
iðDÞ ¼ ixm

2

 
ð1þKÞ

2

R0
2

R2

� �2
o
oDAiðDÞ

� �

�ð1� KÞ
2

1

R2

DiðDÞ þ
1

ðR2Þ2
Z D

�1
AiðDÞdD

 !!
;

ðA:17Þ
where Kð1� S0ÞðR2

R0
2

Þ2, as above.
The recurrence formula for Bessel functions [15] can

be used to re-write the integral contribution in (A.17)

in terms of i ± 1 harmonic absorption.

D0
iðDÞ¼ ixm

2

 
ð1þKÞ

2

R0
2

R2

� �2
o
oDAiðDÞ

� �

�ð1�KÞ
2

1

R2

DiðDÞþ
1

ðR2Þ2
:
chm
2 � i � ð�Aiþ1ðDÞþAi�1ðDÞÞ

 !!
:

ðA:18Þ
Eqs. (A.17) and (A.18) are Eq. (13) in the text.
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